精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > Laser Damage Threshold Testing

技術(shù)文章

Laser Damage Threshold Testing

技術(shù)文章

Laser Damage Threshold Testing

Laser Damage Threshold (LDT), also known as Laser Induced Damage Threshold (LIDT), is one of the most important specifications to consider when integrating an optical component such as a mirror into a laser system. Using a laser in an application offers a variety of benefits to a standard light source, including monochromaticity, directionality, and coherence. Laser beams often contain high energies and are capable of damaging sensitive optical components. When integrating a laser and optical components into a system, it is crucial to understand the effects of laser beams on optical surfaces and how laser damage threshold is quantified for optical components.

 

The type of damage induced to an optical component by a laser beam is dependent on the wavelength, pulse length, polarization, rep rate, and spatial characteristics among other factors. During exposure to a continuous wave (CW) laser, failure can occur due to laser energy absorption and thermal damage or melting of the substrate material or the optical coating. The damage caused by a short nanosecond laser pulses is typically due to dielectric breakdown of the material that results from exposure to the high electric fields in the laser beam. For pulse widths in between these two regimes or for high rep rate laser systems, laser induced damage may result from a combination of thermally induced damage and breakdown. For ultrashort pulses, about 10ps or less, nonlinear mechanisms such as multiphoton absorption and multiphoton ionization become important.

 

Testing Laser Damage Threshold

Laser-Induced Damage Threshold (LIDT) testing is a good method for quantifying the amount of electromagnetic radiation an optical component can withstand. There are a variety of different LDT tests. For example, Edmund Optics follows the ISO-11254 procedures and methods, which is the industry standard for determining the laser damage threshold of an optical component. Utilizing the ISO-11254 standard enables the fair comparison between optical components from different manufacturers.

 

Edmund Optics' LDT testing is conducted by irradiating a number of test sites with a laser beam at different energy densities for pulsed lasers, or different power densities for CW lasers. The energy density or power density is incrementally increased at a minimum of ten sites at each increment. The process is repeated until damage is observed in of the irradiated sites. The LDT is the highest energy or power level at which no damage is observed in any of the irradiated sites. Inspection of the sites is done with a Nomarsky-type Differential Interference Contrast (DIC) microscope with 100X - 150X magnification. Visible damage is observed and the results are recorded using pass/fail criteria. Figure 1 is a typical damage probability plot of exposure sites as a function of laser pulse energy.

Figure 1: Exposure Histogram of Laser Damage Threshold Probability versus Exposure Site

 

In addition to uncoated optical components, optical coatings are also subject to damage from the presence of absorption sites and plasma burn. Figure 2 is a real-world image of coating failure due to a coating defect. For additional information on the importance of LDT testing on coatings, view The Complexities of High-Power Optical Coatings.

Figure 2: Coating Failure from 73.3 J/cm2 Source due to Coating Defect

 

Defining Laser Damage Threshold

There are many variables that affect the Laser Damage Threshold (LDT) of an optical component. These variables can be separated into three categories: laser, substrate, and optical coating (Table 1).

Variables that Affect LDT/LIDT

Laser

Substrate

Coating

Output Power

Material

Deposited Material

Pulse duration

Surface Quality

Deposition Process

Pulse Repetition Rate

Cleanliness

Pre-Coating Preparation and Cleaning

Beam Profile

Reactivity to the Environment

Lot-to-Lot Control

Beam Diameter (1/e2)

Material Absorption

Coating Design and Optimization

Wavelength

Material Homogeneity

Protective Layers

LDT is typically quantified by power or energy densities for CW and pulsed lasers, respectively. Power density is the power per cross-sectional beam area of the laser beam (typically W/cm2). Similarly, energy density is the energy per cross-sectional beam area of a specific pulse duration (typically given in J/cm2). Lasers are available with a multitude of different wavelengths and pulse durations, therefore, it is useful to be able to scale LDT data to help determine if an optical component is suitable for use with a given laser. As a general rule of thumb, the following equation can be used to roughly estimate LDT from given data, LDT(λ1,τ1), LDT(λ2,τ2). This approximation only holds when scaling over relatively small wavelength or timescale ranges, and can not be used to extrapolate e.g. from ns to fs pulses, or from UV to IR.

In this equation τ1 is the laser pulse length and λ1 is the laser wavelength for the given LDT and τ2 is the laser pulse length and λ2 is the laser wavelength with unknown LDT. For example, the LDT for a mirror is 20 J/cm2 at 1064nm @ 20 ns. The LDT using the scaling rule above at 532nm and 10 ns pulse is 20 x (532/1064) x (10/20)½ or about 7 J/cm2. For longer pulses and high rep rate pulsed lasers it is also necessary to check the CW power density limit as well. The scaling equation is not applicable to ultra-short ps to fs pulsed lasers. When using “scaling” rules, safety factors of at least two times the calculated values should be applied to help ensure optical elements will not be damaged.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区
久久久91精品国产| 国内激情久久| 伊人久久大香线蕉av超碰演员| 香港成人在线视频| 国产美女一区| 欧美精品一区二区三区久久久竹菊 | 国产一区二区三区的电影| 午夜精品久久久久久久久| 国产精品网红福利| 欧美日韩国产专区| 亚洲女与黑人做爰| 国内久久精品视频| 国产精品你懂的在线| 久久国产精品72免费观看| 精品69视频一区二区三区 | 午夜精品福利视频| 国产亚洲欧美一区在线观看| 欧美四级在线观看| 久久www成人_看片免费不卡| 一区二区视频欧美| 国产伦精品一区二区三区在线观看 | 欧美日韩在线视频一区| 亚洲欧美视频一区二区三区| 国产一区 二区 三区一级| 国产精品va在线播放| 久久精品免费播放| 亚洲精品在线观看免费| 精品成人在线视频| 欧美日韩视频在线| 欧美日韩xxxxx| 欧美一区二区视频观看视频| 亚洲成人在线观看视频| 黄色另类av| 欧美四级剧情无删版影片| 欧美激情亚洲精品| 久久九九免费| 99精品99久久久久久宅男| 最新亚洲激情| 国产情侣久久| 国产日韩欧美视频| 欧美精品v日韩精品v国产精品| 另类综合日韩欧美亚洲| 一区二区三区精品视频| 国语自产精品视频在线看抢先版结局| 国产欧美视频一区二区| 欧美日韩成人综合在线一区二区| 欧美18av| 欧美在线一二三四区| 999亚洲国产精| 亚洲社区在线观看| 亚洲国产成人精品女人久久久| 在线视频成人| 国产精品一二三四| 国产日韩综合| 国产精品国产三级国产普通话99 | 欧美日产国产成人免费图片| 免费高清在线一区| 午夜精品久久久久久久蜜桃app | 99精品久久免费看蜜臀剧情介绍| 国产色视频一区| 国产日韩一区| 国产精品国产自产拍高清av王其 | 国产一本一道久久香蕉| 国产原创一区二区| 欧美午夜片在线免费观看| 欧美图区在线视频| 欧美成人精品激情在线观看 | 久久五月激情| 亚洲欧美在线网| 一本综合精品| 亚洲欧美偷拍卡通变态| 亚洲精品乱码久久久久久久久| 999亚洲国产精| 亚洲国产成人久久| 亚洲最新视频在线| 亚洲日本久久| 亚洲无线观看| 99热精品在线| 午夜精品在线| 另类人畜视频在线| 久久精品视频在线看| 欧美aⅴ一区二区三区视频| 久久精品欧美日韩| 欧美成人69av| 久久久噜噜噜久久人人看| 欧美成人精品高清在线播放| 久久综合狠狠综合久久激情| 欧美激情一二三区| 欧美激情精品久久久久久久变态| 国产精品99一区| 欧美特黄一级| 韩国av一区二区三区| 国产专区综合网| 日韩小视频在线观看专区| 亚洲人成网站影音先锋播放| 亚洲综合电影一区二区三区| 久久精品一区二区| 久久激情五月婷婷| 欧美精品福利在线| 欧美日本精品| 国产在线拍偷自揄拍精品| 国产日韩欧美精品在线| 亚洲国产欧美一区二区三区同亚洲 | 黄色小说综合网站| 一本色道久久综合一区| 9久草视频在线视频精品| 亚洲在线一区| 欧美大片在线观看| 欧美激情中文字幕一区二区| 国产精品乱看| 国产精品专区h在线观看| 亚洲高清视频一区| 亚洲精品日韩激情在线电影| 午夜欧美不卡精品aaaaa| 欧美成人免费全部| 欧美剧在线观看| 国内成+人亚洲| 亚洲国产另类久久久精品极度| 香蕉精品999视频一区二区| 欧美高清在线观看| 欧美日韩国产成人高清视频| 黄色亚洲大片免费在线观看| 亚洲国产精品久久久久| 先锋亚洲精品| 欧美日韩欧美一区二区| 国产精品久久激情| 亚洲精品日韩综合观看成人91 | 亚洲成人中文| 日韩视频永久免费| 老司机午夜精品视频| 国产精品自在在线| 影音先锋一区| 欧美亚洲一区二区在线观看| 欧美日韩精品免费观看视一区二区| 国产精品卡一卡二卡三| 亚洲日本欧美日韩高观看| 久久精品在线观看| 欧美成人综合| 精品91免费| 一本色道久久综合亚洲精品按摩| 久久综合九色九九| 国产一区视频网站| 亚洲激情中文1区| 久久精品亚洲乱码伦伦中文| 国产精品视频久久久| 红桃av永久久久| 久久激情视频免费观看| 国产精品综合久久久| 亚洲国产成人在线| 久久视频免费观看| 国产一区二区三区av电影| 亚洲免费精彩视频| 欧美韩国一区| 亚洲精品一区二区三区樱花| 欧美91福利在线观看| 国产精品午夜在线| 亚洲欧美日韩精品久久久| 欧美丝袜第一区| 在线观看日韩专区| 狼人社综合社区| 伊人一区二区三区久久精品| 久久夜色精品国产欧美乱极品| 欧美日韩午夜在线| 99精品黄色片免费大全| 欧美日韩国产大片| 国语自产在线不卡| 久久全球大尺度高清视频| 黑人一区二区| 老牛国产精品一区的观看方式| 国产精品高潮呻吟久久| 亚洲午夜一区二区| 国产精品区二区三区日本| 亚洲国产欧美国产综合一区| 欧美夫妇交换俱乐部在线观看| 亚洲激情二区| 欧美日本一区二区三区| 伊人久久综合97精品| 免费在线成人| 99精品热6080yy久久| 欧美午夜精品理论片a级按摩 | 国产一区二区三区免费观看| 欧美一区在线看| 黑人中文字幕一区二区三区 | 99国产精品99久久久久久粉嫩| 欧美精品在线看| 亚洲午夜视频在线| 国产日产亚洲精品| 久久九九国产精品| 国产精品久久久久影院亚瑟| 午夜精品福利在线| 国产一区999| 久久综合九色九九| 国产麻豆精品久久一二三| 久久精品国产99精品国产亚洲性色 | 欧美日韩三级| 亚洲欧洲日韩综合二区| 欧美日韩一区免费| 欧美一级大片在线免费观看| 激情欧美丁香| 欧美精选午夜久久久乱码6080|