精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > 紅外(IR)應(yīng)用的正確材料

技術(shù)文章

紅外(IR)應(yīng)用的正確材料

技術(shù)文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
精品一区视频,成人亚洲精品久久久久软件,中文字幕少妇一区二区三区,国产在线精品一区二区
狠狠久久亚洲欧美专区| 久久久国产成人精品| 久久亚洲不卡| 伊人成人开心激情综合网| 欧美日韩一区二区免费在线观看| 日韩午夜在线| 欧美三级在线视频| 一区二区三区四区国产| 国产中文一区二区| 另类亚洲自拍| 日韩亚洲综合在线| 伊人成综合网伊人222| 免费成人黄色av| 在线亚洲+欧美+日本专区| 亚洲国产精品久久久| 欧美日本一区二区三区 | 亚洲欧美美女| 国内精品写真在线观看| 国产精品麻豆va在线播放| 欧美在线观看你懂的| 在线观看av不卡| 国产午夜亚洲精品羞羞网站| 牛人盗摄一区二区三区视频| 久久精品一区二区三区不卡牛牛| 亚洲国产欧美在线| 国产精品啊啊啊| 欧美日韩日本国产亚洲在线| 香蕉成人啪国产精品视频综合网| 在线观看久久av| 狠狠干综合网| 欧美日韩亚洲视频一区| 欧美精品久久久久久久久老牛影院| 亚洲影视综合| 亚洲国产精品va在看黑人| 精东粉嫩av免费一区二区三区| 欧美日韩国产欧| 欧美日韩ab片| 久久久久久久一区二区| 一本色道久久综合精品竹菊| 亚洲精品久久久久久下一站| 国产女主播视频一区二区| 国产精品男女猛烈高潮激情| 六月丁香综合| 欧美99在线视频观看| 亚洲免费在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲春色另类小说| 国产精品一区二区久久久| 国产精品久久一区主播| 嫩草影视亚洲| 欧美极品色图| 久久久久**毛片大全| 一区二区av| 亚洲伊人第一页| 亚洲国产影院| 亚洲三级网站| 国内精品久久久久久久果冻传媒 | 亚洲国产精品久久| 亚洲人成绝费网站色www| 国产欧美在线| 黑人一区二区三区四区五区| 欧美亚洲不卡| 国产精品揄拍500视频| 欧美日韩免费在线| 国产精品入口麻豆原神| 国产精品嫩草99a| 国产在线观看精品一区二区三区| 欧美视频在线免费| 欧美国产1区2区| 欧美日韩不卡一区| 美日韩在线观看| 欧美日本在线看| 免费欧美在线| 欧美日韩一区二区三区免费看| 老司机aⅴ在线精品导航| 欧美高清视频在线观看| 久久久视频精品| 欧美va日韩va| 久久综合色8888| 欧美精品www| 欧美国产日韩一区二区在线观看| 欧美色道久久88综合亚洲精品| 欧美国产日韩精品| 国产精品日本精品| 国产精品成人播放| 国色天香一区二区| 国产欧美日韩精品专区| 亚洲高清色综合| 亚洲高清在线| 亚洲字幕一区二区| 久久在线91| 老司机午夜精品视频| 欧美日韩精品一二三区| 欧美美女视频| 国产一区二区三区久久精品| 国产视频不卡| 亚洲美女中文字幕| 亚洲另类在线视频| 欧美专区在线播放| 欧美另类专区| 欧美三级乱人伦电影| 国产一区二区三区丝袜| 国产一区二区无遮挡| 亚洲免费观看高清在线观看| 99精品国产一区二区青青牛奶| 亚洲欧美日韩一区二区在线| 免费亚洲一区二区| 欧美精品自拍偷拍动漫精品| 国产日产欧美一区| 红桃视频成人| 亚洲福利视频在线| 国产精品国产三级国产普通话99| 国产亚洲一区二区三区在线观看 | 亚洲蜜桃精久久久久久久| 亚洲欧美日韩综合国产aⅴ | 亚洲一区二区少妇| 美女国产精品| 欧美精品一区二区三区在线播放| 国产婷婷一区二区| 在线观看成人一级片| 亚洲一二三四区| 欧美国产三级| 国产精品r级在线| 亚洲国产美女久久久久| 亚洲每日在线| 欧美aⅴ一区二区三区视频| 国产日韩欧美在线播放| 一区免费观看| 欧美影院视频| 国产精品av久久久久久麻豆网 | 欧美精品国产精品| 国产精品第一区| 日韩一级精品| 欧美电影在线| 国产精品国产三级国产专播精品人 | 国产精品一区二区在线| 日韩视频二区| 欧美风情在线| 国产精品美女诱惑| 中文日韩欧美| 欧美精品一线| 国产欧美日韩视频在线观看| 在线亚洲伦理| 欧美日本免费| 国产视频亚洲| 欧美在线电影| 国产欧美欧美| 欧美色图一区二区三区| 国产精品福利av| 精品9999| 久久精品人人做人人综合| 国产欧美日韩精品一区 | 国产丝袜一区二区三区| 亚洲黄页视频免费观看| 奶水喷射视频一区| 亚洲国产二区| 欧美91大片| 国产日产欧美精品| 欧美一区二区成人| 国产三级欧美三级| 亚洲人成在线影院| 男人插女人欧美| 91久久国产综合久久| 农村妇女精品| 国产视频久久| 久久久久久久久岛国免费| 国产丝袜一区二区三区| 99精品国产在热久久下载| 欧美日韩性视频在线| 一本一本久久a久久精品综合妖精 一本一本久久a久久精品综合麻豆 | 伊人久久婷婷色综合98网| 久久精品一区四区| 国模叶桐国产精品一区| 久久久精品午夜少妇| 欧美色精品天天在线观看视频| 亚洲视频网站在线观看| 国产精品久久久对白| 亚洲人成免费| 欧美三级在线播放| 亚洲欧美中文日韩在线| 国产深夜精品福利| 久久噜噜噜精品国产亚洲综合 | 欧美屁股在线| 在线观看视频一区| 欧美国产一区二区在线观看| 亚洲美洲欧洲综合国产一区| 欧美午夜无遮挡| 日韩视频一区二区| 国产精品日韩欧美大师| 久久se精品一区精品二区| 激情综合在线| 欧美国内亚洲| 亚洲成人在线| 欧美日韩 国产精品| 免费亚洲视频| 欧美成人免费在线视频| 国产麻豆日韩| 久久久久久久尹人综合网亚洲| 亚洲东热激情| 欧美手机在线|